The roles of the nitrate reductase NarGHJI, the nitrite reductase NirBD and the response regulator GlnR in nitrate assimilation of Mycobacterium tuberculosis.

نویسندگان

  • Sven Malm
  • Yvonne Tiffert
  • Julia Micklinghoff
  • Sonja Schultze
  • Insa Joost
  • Isabel Weber
  • Sarah Horst
  • Birgit Ackermann
  • Mascha Schmidt
  • Wolfgang Wohlleben
  • Stefan Ehlers
  • Robert Geffers
  • Jens Reuther
  • Franz-Christoph Bange
چکیده

Mycobacterium tuberculosis can utilize various nutrients including nitrate as a source of nitrogen. Assimilation of nitrate requires the reduction of nitrate via nitrite to ammonium, which is then incorporated into metabolic pathways. This study was undertaken to define the molecular mechanism of nitrate assimilation in M. tuberculosis. Homologues to a narGHJI-encoded nitrate reductase and a nirBD-encoded nitrite reductase have been found on the chromosome of M. tuberculosis. Previous studies have implied a role for NarGHJI in nitrate respiration rather than nitrate assimilation. Here, we show that a narG mutant of M. tuberculosis failed to grow on nitrate. A nirB mutant of M. tuberculosis failed to grow on both nitrate and nitrite. Mutant strains of Mycobacterium smegmatis mc(2)155 that are unable to grow on nitrate were isolated. The mutants were rescued by screening a cosmid library from M. tuberculosis, and a gene with homology to the response regulator gene glnR of Streptomyces coelicolor was identified. A DeltaglnR mutant of M. tuberculosis was generated, which also failed to grow on nitrate, but regained its ability to utilize nitrate when nirBD was expressed from a plasmid, suggesting a role of GlnR in regulating nirBD expression. A specific binding site for GlnR within the nirB promoter was identified and confirmed by electrophoretic mobility shift assay using purified recombinant GlnR. Semiquantitative reverse transcription PCR, as well as microarray analysis, demonstrated upregulation of nirBD expression in response to GlnR under nitrogen-limiting conditions. In summary, we conclude that NarGHJI and NirBD of M. tuberculosis mediate the assimilatory reduction of nitrate and nitrite, respectively, and that GlnR acts as a transcriptional activator of nirBD.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Role of narK2X and narGHJI in hypoxic upregulation of nitrate reduction by Mycobacterium tuberculosis.

Mycobacterium tuberculosis is one of the strongest reducers of nitrate in the genus Mycobacterium: Under microaerobic conditions, whole cells exhibit upregulation of activity, producing approximately eightfold more nitrite than those of aerobic cultures of the same age. Assays of cell extracts from aerobic cultures and hypoxic cultures yielded comparable nitrate reductase activities. Mycobacter...

متن کامل

Polymorphic nucleotide within the promoter of nitrate reductase (NarGHJI) is specific for Mycobacterium tuberculosis.

Mycobacterium tuberculosis rapidly reduces nitrate, leading to the accumulation of nitrite. This characteristic served for the past 40 years to differentiate M. tuberculosis from other members of the Mycobacterium tuberculosis complex (MTBC), such as Mycobacterium bovis (non-BCG [referred to here as simply "M. bovis"]), Mycobacterium bovis BCG, Mycobacterium africanum, or Mycobacterium microti....

متن کامل

A genomic view on nitrogen metabolism and nitrogen control in mycobacteria.

Knowledge about nitrogen metabolism and control in the genus Mycobacterium is sparse, especially compared to the state of knowledge in related actinomycetes like Streptomyces coelicolor or the close relative Corynebacterium glutamicum. Therefore, we screened the published genome sequences of Mycobacterium smegmatis, Mycobacterium tuberculosis, Mycobacterium bovis, Mycobacterium avium ssp. parat...

متن کامل

Analysis of nitrate reductase mRNA expression and nitrate reductase activity in response to nitrogen supply

Nitrate is one of the major sources of nitrogen for the growth of plants. It is taken up by plant roots and transported to the leaves where it is reduced to nitrite in the. The main objective of this research was to investigate stimulatory effects of sodium nitrate, potassium nitrate, ammonia and urea on the production/generation of the nitrate reductase mRNA in Triticum aestivum plants. The pl...

متن کامل

A promoter mutation causes differential nitrate reductase activity of Mycobacterium tuberculosis and Mycobacterium bovis.

The recent publication of the genome sequence of Mycobacterium bovis showed >99.95% identity to M. tuberculosis. No genes unique to M. bovis were found. Instead numerous single-nucleotide polymorphisms (SNPs) were identified. This has led to the hypothesis that differential gene expression due to SNPs might explain the differences between the human and bovine tubercle bacilli. One phenotypic di...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Microbiology

دوره 155 Pt 4  شماره 

صفحات  -

تاریخ انتشار 2009